Workshop on Advanced Neutron Source and its Application 4 - 5 Nov. 2017

Present status of neutron target on J-PARC

Takashi Naoe

Hiroyuki Kogawa, Takashi Wakui Katsuhiro Haga, Eiichi Wakai, Hiroshi Takada

Mercury target group, Neutron Source Section, Material and Life Science Division, J-PARC Center, JAEA

• Background

Outline of J-PARC spallation neutron source Mercury target, pressure waves For achieving 1MW stable operation **Cavitation damage mitigation technologies** Gas microbubbles injection into mercury Multi-walled beam window, etc **Improvement of target vessel design** Fatigue strength up to gigacycle

Summary

Spallation neutron source in J-PARC Japan Proton Accelerator Research Complex in JAEA Tokai-site

J-PARC

J-PARC **Operation histories for J-PARC mercury targets**

- Target ID is fabrication number
- Operation time calculated from _ the number of pulses at 25 Hz
- kWqq denotes power/pulse _

	From	Due	Operation time, h	Average beam power, kW	Accumulated energy, MWh	Accumulated dose, dpa	Remaks
#1	2008/5	~2011/11	3713	127	471	0.84	Pneumatic bellows failed by earhquale
#3	2011/12	~2014/6	7537	272	2050	2.28	
#5	2014/10	~2015/4	1672	400	670	0.73	Water leak from outer water shroud
#7	2015/10	~2015/11	308	516	159	0.17	Water leak from inner water shroud
#2	2016/2	2017/7	5801	181	1048	1.04	
#8	2017/10~	in service		300			4

Proton beam-induced pressure waves in mercury

Factors to decide lifetime of target

Radiation damage (incl. water shroud)

- Depending on beam power and operation time (8 dpa@5000MWh)
- Designed lifetime:1 MW 2500 h
 Tentative dose : 5 dpa (10 dpa allowable)

Damage inside mercury vessel

- **Cavitation damage** Depending on beam power & operation time
- Measures

1st :Surface modification
3rd: Gas microbubbles injection
5th: Bubbling and double walled structure
Prediction and measurement of damages
for lifetime estimation

Fatigue by pressure waves

- Very high-cycle fatigue
- Induced by beam injection 4.5x10⁸ cycles for 5000 hours (1Y)

Fatigue by thermal stress

- Low cycle fatigue
- caused by beam trip ca.10⁴ cycles for 5000 hours

Cavitation damage is dominant factor to decide lifetime in the present situation

Cavitation damage mitigation technologies

Surface hardening

Targets

1st

3rd

4th

5th

8th

Fabrication number

Reduce cavitation damage Nitriding & Carburizing, Kolsterising®

2nd target (Spare) No-bubbling techniques to mitigate pressure waves and cavitation damage **Microbubble injection**

Reduce pressure wave and cavitation damage Inject helium gas microbubbles (R<50 μ m) into flowing mercury (VF:10⁻² in flow ratio)

3rd target vessel with bubble generator Double walled structure

Reduce cavitation damage by high-speed mercury flow and narrow gap

 Order of target vessel operation

 1st→ 3rd → 5th → 7th→ 2nd → 8th

 Year 2008
 2011
 2014
 2015
 2016
 2017

Surface hardening

Surface hardening

Surface hardening

Double-walled structure

Bubble generator

Effect of gas microbubble injection

- Target system has the LDV diagnostic system (LDV, Retro-reflecting corner cube mirror)
- Peak amplitude of 1 MW_{equiv.} study (OCT. 2015) showed similar amplitude of 300 kW W/O bubble Bubbles extremely mitigates pressure waves
- Peak amplitude of velocity for bubbles case seems to be 1/4 of W/O bubbles cases

5th target ~

Double-walled beam window

D. McClintock et al., J. Nucl. Mater. 431 (2012) 147–159 <u>T. Naoe, et al., JNM in press</u>

 Org
 O

Single wallDouble wallFlow effectNarrow gap effect

Deform bubble growing/collapsing <u>by high-speed flow</u> Interrupt bubble growing/collapsing <u>by narrow gap</u>

Direction change of microjet ejection reduces cavitation damage at wall

- Expects damage reduction effects inside narrow channel
 - Flowing effect (increase pressure gradient around surface)
 - Narrow channel effect (asymmetrically bubble collapsing)
- SNS/ORNL target has actual results of damage mitigation effect by double-walled structure

Cutting and replacement of target vessel

- Target vessel replaces every year (Designed lifetime: 5000 MWh)
- Cut beam window for damage inspection and future PIE
- Replace new target by full-remote handling

Leak from water shroud

- 5th and 7th targets were failed due to water leak at water shroud
- Water leaked to outside of target vessel (#5), inside of target vessel (#7)
- Bolt head and outer/inner shroud interface was welded by TIG weld
- Lack of penetration depth for seal welding led leakage of water (#5)
 Fatigue crack was propagated thermal cycles by beam trip from weld defect

J-PARC

J-PARC

Lesson and improvement from failures

- Wire EDM was applied to reduce welding line and to eliminate diffusion bonding
- Monolithic structure of LDV mirror base seemed to be induce un-welded region which acts as notch, and fatigue crack propagated by pressure waves
- Strengthen the inspections for weld lines by RT and UT

Gigacycle fatigue

- Cyclic loading (50 1/s, 4.5x10⁸ cycles at 25 Hz) by proton beam-induced pressure waves
- Gigacycle fatigue, non-metallic inclusion, insufficient data for welding
- Stress applied through the ultrasonic resonance of 20kHz (430 Hz for intermittent loading)
- Target vessel (triple walled structure) assembled with TIG weld
 →Now we are investigating effect of welding and weld bead on gigacycle fatigue

Upgrade scheme to achieve MW stable operation 14

Inner wall

by high-speed flowing and narrow gap

Mitigate cavitation damage

Mitigate by microbubbles

Double-walled

Bubble generator

Outer wall

structure

Suppress pressure waves by gas wall (curtain)

Outer wall

Mitigate cavitation damage by high-speed flowing and microbubbles

Summary

- Cavitation damage in mercury is the critical issue to decide lifetime of target vessel
- 1 MW_{equiv} beam experiment was achieved in 2015, and confirmed excellent effect of injecting gas microbubbles on pressure wave mitigation by LDV measurement
- Mitigation technologies are developed and demonstrated their effectiveness to reduce cavitation damage
- Effect of microbubbles injection and double-walled structure will be checked by 8th target inspection (2018 summer)
- Target structure is gradually updated for achieving 1 MW stable operation

Backup slides

J-PARC

Target diagnostic system

- LDV have been installed for monitoring the vibration of target vessel by proton beam injection
- Corner cube reflector was directly machined on pure gold plate by newly developed micro machining technique (Ni mirror of #1 target corroded)
- Mirror part is directly contacting with the mercury (mono-structure)

Gas microbubbles injection system

- Swirl type microbubble generator was installed from 3rd target vessel with gas circulation system to mitigate proton beam-induced pressure waves
- Peak bubble radius is 30 μ m, void fraction (He/Hg flow ratio) is 10⁻² at bubble generator

Difficulties in cutting by full remote handling

Inner most wall of 5th target remained window

Cutting performed under target fixing on trolley by full-remote handling Nos. 1,3,5 targets cut without any lubricant —>Failed #3 and #5 cutting *No quantitative information was obtained for bubbling effect —> #8 will cut 2018* Succeeded #2 cut by optimizing cut condition (w/ lubricant)

J-PARC

Damage depth measurement

Laser profilometer

Replicate surface (silicon-rubber) for LSM observation

• Prepared two types of measurement systems:

Laser profilometer for deep damage (0.1 mm~penetrated damage) Replica for detail observation (0.1 µm~0.5 mm)

Radiation dose rate of used target vessel

- Beam window is irradiated proton and neutron irradiation
- Difference between top and bottom sides around mirror is affected by moderator and reflector (Volume of neutron absorber around top side is larger than bottom side)
- Remaining mercury and radioactive materials are also affected dose rate

Storage building for used components

- MLF building has storage room for used targets (capacity:8)
- Not enough for 30 years operation (1 target/year)
- Storage building (capacity:15-20) was completed and will transport in next summer 2

Troubles in 2015 — 5th and 7th targets -

- 5th and 7th targets were failed due to water leak at water shroud
- Leak sensor at the drain tank of helium vessel was detected leak for 5th target Water leaked to outside of target vessel
- Leak sensor inside target vessel was detected leak for 7th target Water leaked to inside of target vessel

Radioactive gas was not released from stack (Leak occurred in enclosed vessel)

Structure of mercury target vessel (~5th target)

- Target vessel has triple walled structure (Inner/Outer water shroud, Mercury vessel)
- Outer and inner water shroud (diffusion bonded) was bolted to mercury vessel
- Bolt head and outer/inner shroud interface was welded by GTAW

Improvement of inspection

6th target vessel was inspected to investigate inspection processes of RT and UT

Inspection of mock-up specimen by phased array & Full Matrix Capture (FMC) / Total Focusing Method (TFM)

Radiographic Testing (RT)

Ultrasonic Testing (UT)

Details of nondestructive inspection for target vessel will be shown in Wakui's poster

Based on the experiences of target failure, we revised the inspection procedure RT : Front part of mercury vessel only (7 th) -> All part including water shroud (8th 1)

Un penetrated

UT inspection will be added : Nondestructive inspection method: phased alley &FMC/TFM method (GEKKO, Insight) 25

Heat density and thermal stress

- Heat density in rear part is less than 1/4 of fore part
- Thermal stress is less than half of allowable stress
 Bolt structure in rear part is enough to withstand thermal stress at 1 MW

Heat distribution in mercury target

1 MW proton beam condition

Half of input beam energy change to heat in mercury

Gaussian beam profile **Total energy** 480 kW in mercury

Peak energy deposition

Max=381.397 W/cc (15.25 J/cc)

Distribution on Z=0 plane

Max=264.73 W/cc (10.58 J/cc)

Adding Octapole magnet

491 kW

$$\Delta T = \frac{\Delta Q}{\rho C_V}$$

Rise of pressure in mercury

$$\Delta P = \beta K_T \Delta T$$

C_v: Specific heat 139 [J/(kgK)] ρ: Density 13500 [kg/m³]

ΔT=8.52°C@400 W/cc(16J)

β: Thermal expansion rate 180.99e-6 [1/K] K_T: Bulk modulus 25.6 [GPa] $\Delta P=40MPa@400W/cc(16J)$

Surface hardening treatment

- Cavitation damage tests in stagnant mercury
- Incubation period for erosion damage extends 10 times by Kolsterising[®]

J-PARC

Fatigue behavior in mercury

Fracture surface at 300 MPa

- Fatigue strength was degraded by mercury immersion at high stress imposed area
- Fatigue crack propagation accelerates by mercury immersion in the high-stress intensity factor range

Effect of void fraction on pressure wave mitigation

- Peak amplitude of LDV is correlated with the void fraction
 Peak velocity was normalised at w/o bubble case predicted based on beam experiments
- LDV denotes the same tendency of the numerical simulation

Damage and pressure response in narrow channel

Time responses of pressure and cavitation bubble in narrow channel at 500 kW conditions

cavitation damage in narrow channel

Bubble behavior in the narrow channel

σ: Surface tension **P: Pressure** η: Viscosity

- Short interval of negative pressure is not effective to bubble growth
- Maximum bubble size at narrow channel is a half of bulk side •
- Insufficient data to explain a significant damage difference